CPSC 326 Problem Set 2

Due March 19

- 1. Given the following grammar G_1 :
 - $E \rightarrow E + T \mid T$ $T \rightarrow T \times F \mid F$ $F \rightarrow (E) \mid a \mid b \mid c$
 - a. What are the variables?
 - b. Which is the start variable?
 - c. What are the terminals?
 - d. How many productions does the grammar have?
- 2. Give parse trees for the following strings using grammar G_1 above:

a.	a	d.	$(a+b) \times b$
b.	$a + b \times c$	e.	(((a)))
c.	$a \times b + c$	f.	a + b + c

- 3. Design a PDA which recognizes the same language as the grammar G_1 generates.
- 4. Create a context-free grammar which recognizes all strings of "properly-matched" parenthesis. The strings on the left are examples of properly-matched parenthesis, and should be produced from your grammar. The strings on the right are not properly matched and should not be produced:

Proper:	Improper:
(())	())
00	())(
(00)	(()

- 5. Create a push-down automaton which recognizes the language of properly-matched parenthesis.
- 6. Is the language of properly-matched parenthesis a regular language? Justify your answer.

- 7. Give context-free grammars for the following two languages:
 - a. $\{a^m b^n c^n \mid m, n \ge 0\}$
 - b. $\{a^n b^n c^m \mid m, n \ge 0\}$
- 8. Given your answers to the previous problem, and the fact that the language $\{a^n b^n c^n \mid n \ge 0\}$ is *not* context-free, are context-free languages closed under intersection? Explain your reasoning.
- 9. Show that context-free languages are closed under the regular operations of union, concatenation, and star.