
Introducing Tetra: An Educational Parallel Programming System

Ian Finlayson, Jerome Mueller, Shehan Rajapakse, Daniel Easterling
The University of Mary Washington

Fredericksburg, Virginia, USA
finlayson@umw.edu, {jmueller, srajapak, deast3cx}@mail.umw.edu

Abstract—Despite the fact that we are firmly in the multicore
era, the use of parallel programming is not as widespread
as it could be – in the software industry or in education.
There have been many calls to incorporate more parallel
programming content into undergraduate computer science
education. One obstacle to doing this is that the programming
languages most commonly used for parallel programming are
detailed, low-level languages such as C, C++, Fortran (with
OpenMP or MPI), OpenCL and CUDA. These languages
allow programmers to write very efficient code, but that
is not so important for those whose goal is to learn the
concepts of parallel computing. This paper introduces a parallel
programming language called Tetra which provides parallel
programming features as first class language features, and also
provides garbage collection and is designed to be as simple
as possible. Tetra also includes an integrated development
environment which is specifically geared for debugging parallel
programs and visualizing program execution across multiple
threads.

Keywords-Parallel Programming; Education; Debugging;

I. INTRODUCTION

We are firmly in the multicore era. Nearly all general-
purpose computing devices (including mobile phones) have
more than one processor core. Furthermore, processor clock
speeds have largely levelled off. Unable to significantly
increase single-core performance, processor designers place
more cores in each chip. In order to achieve increased
performance, we will have to employ parallel programming.
Unfortunately this has yet to happen in a truly widespread
way.

One reason for this is that parallel programming tends
not to be a major part of undergraduate computer science
education, despite repeated calls for it to be introduced
earlier and more thoroughly [1] [2] [3].

One obstacle present in teaching parallel programming
to undergraduates is the programming languages commonly
used for parallel programming. Because the main reason
to employ parallel programming is increased performance,
the languages commonly used for parallel computing are
those focussed on performance: C, C++, Fortran, OpenCL
and CUDA. Unfortunately, these are difficult programming
languages even for many upper-level students to use effec-
tively. Coupled with the shift towards simpler languages for
introductory computing classes, it is difficult to use these
languages to introduce parallelism early in the computer
science curriculum.

Commonly used introductory languages like Python and
Java can also be used for parallelism of course, but this is
also not quite ideal since these languages do not include
parallel concepts as native, first class language features
as OpenCL and CUDA do. Nor do they have systems
like OpenMP which adds parallelism on top of C, C++
and Fortran. Of course these languages have parallelism in
the standard library, but there are advantages to including
parallelism as a first class language feature, as we will
discuss in Section 2.

In particular, Python has recently become the most popu-
lar introductory programming language at top U.S. schools
[4]. While generally a fine language, Python is especially
poorly suited for parallel programming due to the fact that
the canonical implementation uses a global interpreter lock
(GIL) [5]. This means that, in a multi-threaded Python
program, only one thread can actually run at a time. It is
possible to write concurrent programs in Python, but one
cannot achieve speedup with a truly parallel program 1.

Another obstacle to learning parallel programming is the
lack of debuggers or integrated development environments
(IDEs) specifically geared to parallel computing. Those
that exist are typically difficult to use, proprietary, or lack
features that would help programmers debug parallel code.
This is especially a problem as debugging parallel code
is much more difficult than sequential code due to the
possibility of race conditions and deadlock.

This paper introduces a new programming called Tetra
which attempts to address these issues by providing parallel
programming features as first class language features. The
syntax of the language is similar to Python, and the lan-
guage is designed to make programming both sequential and
parallel programs as simple as possible. As an educational
language, Tetra places a higher emphasis on simplicity than
performance or generality. Tetra also includes an integrated
development environment which is specifically geared for
debugging parallel programs and visualizing program exe-
cution across multiple threads.

The rest of this paper is organized as follows: Section
two discusses the design of the Tetra programming language,

1It is possible to write parallel Python programs by running more than
one interpreter, and it is also possible for code in Python modules (written
in C) to exploit parallelism, but neither of those approaches is a natural
way to teach parallel computing.



including both its conventional language features and those
that support parallelism. Section three discusses the design
of the Tetra IDE. Section four briefly discusses the current
implementation of the language and IDE. Section five re-
views related work in parallel programming languages and
debuggers. Section six discusses our plans for future work
and section seven draws conclusions.

II. LANGUAGE DESIGN

In this section we will discuss the design of the Tetra
programming language. Besides the support for parallelism,
Tetra is a relatively simple procedural programming lan-
guage. It borrows much of its syntax from Python, including
many keywords, comments beginning with a pound sign, and
the use of white-space and colons to delimit code blocks.

One difference from Python is that Tetra is statically
typed: all types are known at compile/parse time. Like sev-
eral other newer languages, Tetra does have type inference
for local variables. This means that most variables do not
need type declarations; the interpreter infers the types from
the usage of the variable. Function parameters and return
values do need to have declared types, however.

Tetra’s primitive types currently include integers, reals,
strings and booleans. Tetra also includes arrays of these
types (including multi-dimensional arrays). Tetra’s control
structures include if statements, while and for loops, and
function definitions. Figure II lists a simple Tetra program
which calculates a recursive factorial.

# a simple factorial function
def fact(x int) int:
if x == 0:

return 1
else:

return x * fact(x - 1)

# a main function which handles I/O
def main( ):

print("Enter n: ")
n = read_int( )
print(n, "! = ", fact(n))

Figure I. A Simple Sequential Program

As discussed in the future work section, there are several
additional language features we would like to include, but
the core language was kept very simple initially to decrease
the amount of development time to a working product.

As mentioned, Tetra has parallel programming constructs
built-in as first class language features. The simplest of these
is the parallel statement which has the following form:

parallel:
<statement 1>
<statement 2>
...
<statement n>

Each of the statements under the parallel block will be
run in parallel, separate from the others. The program will
then wait for all n statements to finish before moving on to
any code after the parallel block. Each of these statements
can be any legal Tetra statement including a function call,
assignment or loop.

This makes it easy to write multi-threaded programs. The
programmer need only specify that a set of statements should
be done in parallel, and the language takes care of creating,
starting, and joining the threads.

Figure II provides a listing of a Tetra program uses a
parallel statement to calculate the sum of the first 100 natural
numbers in two threads.

# sum a range of numbers
def sumr(nums [int], a int, b int) int:
total = 0
i = a
while i <= b:
total += nums[i]
i += 1

return total

# sum an array of numbers in parallel
def sum(nums [int]) int:
mid = len(nums) / 2
parallel:
a = sumr(nums, 0, mid - 1)
b = sumr(nums, mid, len(nums) - 1)

return a + b

# print the sum of 1 through 100
def main( ):
print(sum([1 ... 100]))

Figure II. A Parallel Sum Program

Tetra also provides background blocks which have the
following form:

background:
<statement 1>
<statement 2>
...
<statement n>

Background blocks are similar to parallel blocks, except
that they do not wait for all of their sub-statements to
terminate before moving on to the rest of the program. They
can be used to launch tasks in the background.



Tetra also provides a parallel for loop which has the
following form:

parallel for <var> in <sequence>:
<statement 1>
<statement 2>
...
<statement n>

Syntactically, it is identical to the regular for loop except
for being prefaced with the parallel keyword. Semanti-
cally, the difference is that each loop iteration can be done
independently of the others. Thus Tetra makes it very easy
to parallelize an algorithm which consists of loops with no
inter-dependence.

Of course not all algorithms are trivially parallelizeable.
Sometimes it is necessary to utilize mutual exclusion to
prevent multiple threads of execution from interfering with
each other. Tetra allows this in the form of lock statements
which have the following form:

lock <name>:
<statement 1>
<statement 2>
...
<statement n>

A lock works by associating a lock name with the piece of
code in the block. Lock names are in a separate namespace
from other Tetra identifiers, so the name can be an existing
variable name, or any other legal identifier name. When a
Tetra program gets to a lock block, it checks that no other
thread of execution is in a lock block that has the same lock
name. This can be the same block, or a different lock block
with the same name. It waits until all threads have exited the
lock block, then proceeds to execute it which keeps other
threads from doing so too.

Figure II lists a Tetra program which uses a parallel for
loop and a lock to find the largest value in an array of
numbers.

Because multiple threads could update the largest
variable at the same time, it is protected inside of a lock.
We also must check again if the number is still the largest
inside the lock since it is just possible that the largest value
was replaced between the previous check and entering the
lock.

The parallel features of Tetra are simple and somewhat
limited for real-world use, but they allow for expressing
many parallel algorithms, and introducing ideas such as race
conditions, deadlock, and other issues beginners to parallel
computing must contend with.

Having these parallel programming constructs as first-
class language features has several advantages. First off, it
minimizes the overhead of parallelization. Code oftentimes
would not need to be restructured to be parallelized; it can
just be wrapped in the appropriate blocks.

# find the max of an array
def max(nums [int]) int:
largest = 0
parallel for num in nums:
if num > largest:

lock largest:
if num > largest:
largest = num

return largest

# run it on some numbers
def main( ):
nums = [18, 32, 96, 48, 60]
print(max(nums))

Figure III. A Parallel Max Program

Secondly it avoids programming errors caused by for-
getting to do something necessary to support threading in
a typical language. For example, if one forgets to join a
thread, a race condition can be introduced. Likewise, if
one forgets to unlock a mutex, a deadlock situation can be
introduced. Tetra makes such mistakes less likely because
the programmer does not need to do those things manually.

It also signifies that parallel computing is not an optional
“add-on”, but a core part of the programming language. In
the future, parallel programming may not be the relatively
specialized sub-field of programming that it is now, and our
programming tools should reflect this.

III. INTEGRATED DEVELOPMENT ENVIRONMENT

While having parallel language constructs built in to
Tetra should make it easier for beginners to learn parallel
programming, having a suitable environment may make even
more difference. To that end, Tetra includes an Integrated
Development Environment (IDE) geared towards developing
and debugging parallel programs.

Figure III shows a screen shot of the current state of
the IDE. Currently supported features include basic editing
features (loading, saving, copy and paste etc.) as well syntax
highlighting of Tetra keywords and the ability to run Tetra
programs from the IDE. Like many other IDEs, program
input and output are directed to a console pane.

We are currently working on adding the ability to step
through Tetra code in the IDE as the program is running.
Unlike most debuggers, the Tetra IDE will have multiple
code views in debug mode: one for each thread of the
currently running program. This will allow students to step
through the different threads independently.

This ability will help students discover race conditions and
deadlock scenarios by stepping through the code in different
orders. For example, they can step though the code in one
thread all the way to the end (or a lock) to ensure that this
does not negatively impact what the other threads are doing.



Figure IV. The Tetra IDE

While obviously a work in progress, we believe these
features of the IDE will be extremely valuable in learning
and teaching parallel programming.

IV. IMPLEMENTATION

The Tetra system currently consists of three major com-
ponents: the compiler front-end, the interpreter, and the IDE.
This section discusses the implementation of this system.

The compiler front-end is written in C++ with the help
of the Bison parser generator [6]. The parser reads in Tetra
source code, and parses it into a abstract syntax tree (AST).
The lexical analyzer is hand-written which was necessary to
handle the significant white space in Tetra.

After the code is parsed into an AST, it has type checking
and type inference applied to it. Because type inference is

only done on the local scope, a simple flow-based algorithm
suffices. If any type errors are found, then they are signalled.

The interpreter is a C++ library which invokes the front-
end to parse the code it is given into the AST. Once this is
done, it interprets the code by traversing the AST recursively.
For the most part, this is identical to the way other tree-based
interpreters work.

However, when the Tetra interpreter gets to a node in the
AST which represents a parallel block, it launches one thread
for each child node (using the Pthreads library) and executes
them in parallel. It then waits for each of those threads to join
before moving on. This is also done for background blocks
except it does not join the threads which were spawned.

Parallel for loops are handled in a similar way, except that
each thread needs to have its copy of the induction variable



inserted into its private symbol table. Because of the way
threads are created dynamically, they have private and shared
symbol tables.

Lock statements are handled with Pthread mutexes. When
a thread enters a lock node, it locks the corresponding mutex.
When it exits, it unlocks the mutex. This way, only one
thread of execution can execute a critical section at a time.

The interpreter is written as a library in order to facilitate
exposing its features to the IDE. There is also a command
line driver program for it which simply calls the interpreter
on its argument from start to finish.

The IDE is also written in C++ using the Qt library for
the user interface. It calls upon the interpreter library to
allow the user to run programs. We are currently working
on exposing more of the interpreter’s internals in the library
so that the IDE can do program inspection and control
execution – by stepping through the code line by line.

A lot of effort was put into ensuring that the interpreter ac-
tually provides speedup when given a parallel program. Due
to the sharing of data structures amongst interpreter threads,
this was not easy to achieve – which could explain why
interpreters for Python and other popular languages avoid
this issue altogether. To test the speedup we used two Tetra
programs: one which calculates the first million primes, and
one which solves an instance of the travelling salesman
problem. Each of these programs achieves approximately 5X
speedup when run on 8 cores which is a 62.5% efficiency
rate. Thus Tetra programs are able to achieve speedup when
running parallel programs, but more can be done to improve
the efficiency of the interpreter.

V. RELATED WORK

This section discusses other works similar to Tetra, includ-
ing both programming languages geared towards parallelism
and parallel programming debuggers.

There are several programming languages focussed on
parallel programming, and making parallelism easier to
express. Among these are X10 [7], Chapel [8], ParaSail
[9], Cilk [10] and Unified Parallel C (UPC) [11]. Tetra is
similar to these languages in that they all include parallel
programming features at the programming language level.
Tetra is different in that it is aimed squarely at beginning
programmers as opposed to those in the parallel computing
or high performance computing fields.

There has also been prior work in the area of debugging
parallel applications. Many debuggers such as DDD [12],
Eclipse [13] and Visual Studio [14] have some ability to
debug multi-threaded applications. Typically one can inspect
the program state of each thread, but features planned for
Tetra such as the ability to step through threads indepen-
dently is not available. This is because these debuggers work
by inspecting the state of a native application, which does
not provide this facility.

There are two proprietary debugging solutions specifi-
cally geared towards easily debugging parallel programs:
TotalView from Rogue Wave Software [15], and Allinea
DDT [16]. Both of these are expensive proprietary products,
and are geared towards professional programmers in the
field, not at beginning students.

VI. FUTURE WORK

In this section, we discuss some of the work we have
planned for the future of Tetra. The most pressing piece
of future work to accomplish is the completion of parallel
debugging features in the IDE. Besides that, there are several
other enhancements planned.

The language was intentionally kept very simple to reduce
the amount of initial work needed to reach a working
product. There are several other desirable language features
such as the ability to create new types with a class statement,
the inclusion of additional built-in types such as associative
arrays and tuples, and error handling that we would like to
add to the language to increase its expressivity.

The language also has an extremely spartan standard
library at the moment, which consists only of basic I/O
functions and functions for finding the lengths of strings and
arrays. A more robust library with mathematical functions,
string handling functions and so on will be developed in the
future as well.

Another important piece of future work is teaching a
parallel programming class in which Tetra is used. This will
thoroughly test the language, IDE, and interpreter, as well
as allow us to gauge how effective Tetra is for instructing
students in parallel programming techniques which will
guide its evolution.

We also plan on evaluating the effectiveness of Tetra
empirically through a pedagogical study in which it is used
for instructing beginners in parallel computing, as compared
to other languages.

Lastly, we plan to add a native code compiler, which will
compile Tetra code into an efficient executable, possibly by
targeting C with Pthreads as the output language. This will
allow Tetra programs to be run more efficiently than with
the interpreter. With this in place, one could write a Tetra
program, run it through the IDE and step through it in the
debugger when it is being developed, then compile it to a
native executable to run it more efficiently. It would even be
possible to target CUDA or OpenCL so that compiled Tetra
code could run directly on a GPU.

VII. CONCLUSION

There is currently a disparity between the programs we
write and the machines we run them on. Computer systems
are increasingly parallel machines while, by and large, the
programs we run on them are sequential. If we are going
to see increased program performance in the future, we



will need a shift in computer science and computer science
education towards embracing parallel programming.

Another trend in programming and computer science edu-
cation, is one towards higher-level languages such as Python.
These languages are easier for beginners to learn, but are not
commonly used for parallel computing. Historically this is
because people who write parallel programs are those who
are interested in maximizing performance and use C, C++
or Fortran for that reason.

In a many-core world, however, exploiting parallelism
effectively will be more important in terms of performance
than the gains associated with using an efficient low-level
language.

Tetra attempts to address this disparity by including par-
allel programming facilities as first class language features,
and by providing a debugger to make the development and
testing of parallel programs as easy as possible.

REFERENCES

[1] Y. Ko, B. Burgstaller, and B. Scholz, “Parallel from
the beginning: The case for multicore programming
in thecomputer science undergraduate curriculum,” in
Proceeding of the 44th ACM Technical Symposium on
Computer Science Education, ser. SIGCSE ’13. New York,
NY, USA: ACM, 2013, pp. 415–420. [Online]. Available:
http://doi.acm.org/10.1145/2445196.2445320

[2] L. Ivanov, H. Hadimioglu, and M. Hoffman, “A
new look at parallel computing in the computer
science curriculum,” J. Comput. Sci. Coll., vol. 23,
no. 5, pp. 176–179, May 2008. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1352627.1352655

[3] L. R. Scott, T. Clark, and B. Bagheri, “Education and
research challenges in parallel computing,” in Proceedings
of the 5th International Conference on Computational
Science - Volume Part II, ser. ICCS’05. Berlin, Heidelberg:
Springer-Verlag, 2005, pp. 44–51. [Online]. Available:
http://dx.doi.org/10.1007/11428848 6

[4] P. Guo. (2014) Python is now the most popular introductory
teaching language at top u.s. universities. [Online]. Available:
http://cacm.acm.org/blogs/blog-cacm/176450

[5] D. Beazley, “Understanding the python gil,” in PyCON
Python Conference. Atlanta, Georgia, 2010.

[6] C. Donnelly and R. Stallman, “Bison. the yacc-compatible
parser generator,” 2004.

[7] P. Charles, C. Grothoff, V. Saraswat, C. Donawa,
A. Kielstra, K. Ebcioglu, C. von Praun, and
V. Sarkar, “X10: An object-oriented approach to non-
uniform cluster computing,” SIGPLAN Not., vol. 40,
no. 10, pp. 519–538, Oct. 2005. [Online]. Available:
http://doi.acm.org/10.1145/1103845.1094852

[8] B. L. Chamberlain, D. Callahan, and H. P. Zima, “Par-
allel programmability and the chapel language,” Interna-
tional Journal of High Performance Computing Applications,
vol. 21, no. 3, pp. 291–312, 2007.

[9] S. T. Taft, “Multicore programming in parasail,” in Reliable
Software Technologies-Ada-Europe 2011. Springer, 2011,
pp. 196–200.

[10] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson,
K. H. Randall, and Y. Zhou, Cilk: An efficient multithreaded
runtime system. ACM, 1995, vol. 30, no. 8.

[11] T. El-Ghazawi and L. Smith, “Upc: unified parallel c,” in
Proceedings of the 2006 ACM/IEEE conference on Super-
computing. ACM, 2006, p. 27.

[12] A. Zeller and D. Lütkehaus, “Ddda free graphical front-end
for unix debuggers,” ACM Sigplan Notices, vol. 31, no. 1, pp.
22–27, 1996.

[13] E. Foundation. (2014) Eclipse ide. [Online]. Available:
https://eclipse.org/ide/

[14] M. Corporation. (2014) Visual studio. [Online]. Available:
http://www.visualstudio.com/

[15] I. D. I. Solutions, “Totalview debugger: A comprehen-
sive debugging solution for demanding multi-core applica-
tions,” Retrieved 03/04/2009, from http://www. totalviewtech.
com/pdf/TotalView Debug. pdf, Tech. Rep., 2009.

[16] K. Antypas, “Allinea ddt as a parallel debugging alternative
to totalview,” Lawrence Berkeley National Laboratory, 2007.


