
Overview
Welcome to the Fall 2022 ACM Programming Competition! This is a contest wherein you compete amongst your fellow
students, and professors, in an effort to solve a set of programming problems as fast as possible.

Problems
There are ten problems of (roughly) increasing difficulty. The team who solves the most problems is declared the winner.
In the event of a tie, the team with the best time wins. The best time also includes penalties for wrong submissions.
Each problem has a general description, details on the formats for input and output, and example input and output.

Input is done from standard input and output is done to standard output. Do not open any files inside of your program.
Output of your program must match that of the correct output exactly. You can solve the problems in C, C++, Java, or
Python. Up to date versions of these languages will be used to judge your entries. You should save your code using the
standard extension for your language of choice (.c .cpp .java and .py respectively).

Rules
You are allowed to have any printed material such as books or printouts. You are also allowed to access standard library
documentation for your language of choice. No other use of the internet is permitted. You are also not allowed to copy
and paste code from any source be it the web, a thumb drive, or another file that you have. Only one computer is
allowed to a team.

Logging In
To log in to the system, direct your browser to https://bit.ly/3TKxH7w. You will then need to enter your team name
and password which are provided for you. This will bring up the interface for you to submit solutions to the problems,
ask questions (which will be broadcast to all participants), and see how your team is doing.

Submitting
To submit a solution, first make sure that you select the correct problem letter on the top of the site. Then click the
“Choose File” button. Then choose the file that contains your source code (be sure it has the correct extension). After
that it will be submitted for judging. It will receive an automatic judging response which is marked pending. Your
solution will then be checked manually and a final response will be assigned.

DO NOT TURN OVER THIS SHEET UNTIL THE CONTEST STARTS

https://bit.ly/3TKxH7w

Problem A: Say My Name

Most Pokemon only communicate by saying their own name with
different inflections. They often repeat their name many times to
form a “sentence”. Write a program to read in a Pokemon’s name,
and a number, then output the Pokemon’s name that many times.

Input

Input will consist of two lines. The first line is the name of the
Pokemon. The second line is a number indicating how many times
to repeat the name.

Output

Output should consist of a single line containing the name of the
Pokemon repeated, separated by spaces.

Sample Input

Pikachu
7

Sample Output

Pikachu Pikachu Pikachu Pikachu Pikachu Pikachu Pikachu

Problem B: Making Change

Poke Marts sell many items that are helpful for Pokemon train-
ers including poke balls, potions, Pokemon repellents and escape
ropes. You work in a Poke Mart, and your boss has asked you to
write a program to calculate the change given to trainers after they
make a purchase.

Your program will be given a list of integer values representing the
cost in Pokedollars for the items the trainer is buying. It will also
be given the amount of Pokedollars the trainer pays with. Your
program will then compute the change returned to the trainer, or
inform them they do not have enough money.

Input

The first line of input will be an integer giving the number of items the trainer is buying. Next,
there will be that many lines giving the price of each item. The last line of input will be the
amount the trainer gives the cashier.

Output

Output will be of the form “Change is <amount>.” where <amount> is replaced with the
amount of change the trainer is due, or “Not enough money!” if the trainer is short.

Sample Input 1

4
200
700
450
200
1800

Sample Output 1

Change is 250.

Sample Input 2

4
200
700
450
200
1200

Sample Output 2

Not enough money!

Problem C: Nidoran Explosion

Reggie is a Pokemon breeder who specializes in breeding Nidorans.
Reggie starts with two Nidorans that are just born. Every pair of
Nidorans that Reggie has that begins a year at 3 years of age or
more is able to produce an offspring Nidoran each year.

Reggie wants to be able to predict how many Nidorans he will have
after a given number of years. He has asked you to write a program
that will take in a number, N, and compute how many Nidorans
there will be after N years. You can assume that no Nidorans will
die.

Input

Input will be a single integer, the number of years.

Output

Output should be of the form “There will be <number> Nidorans after <N> years.”

Sample Input

17

Sample Output

There will be 51 Nidorans after 17 years.

Problem D: Can you Dig It?

The Pewter Museum of Science in Kanto is holding a treasure hunt for young Pokemon trainers.
The hunt consists of an 8x8 plot of land. In one of the sections, is buried a Pokemon fossil, a
rare prize.

In each of the other 63 sections, is a piece of paper with a 2-digit number written on it. This
number is a clue directing the trainer to the next section of land to search. The tens digit
indicates the row number, and the ones digit indicates the column number.

Participants in the treasure hunt start in the first section (row 1, column 1) and follow the clues
until they either find the fossil, or go back to a section of land they have already searched. Your
goal is to write a program which, given what’s buried in each section of land, will determine
whether or not the participants will find the fossil.

Input

Input will consist of 8 lines. Each line corresponds to a row in the plot of land, and contains
8 entries. Each entry is either a two-digit number indicating the cell of the next clue, or the
value 0 which indicates that the cell contains the fossil.

You can assume that no clue will refer to a non-existent cell.

Output

Your program should output output the cell numbers that are searched at each step. If the
participant finds the fossil, you should end by printing “Found the fossil!”. If the participant
is sent back to search a section that they have already searched, you should print “Fossil not
found!”.

Sample Input

31 21 66 12 52 87 64 44
11 13 78 17 44 51 36 33
76 44 12 54 84 71 12 33
24 53 15 68 58 0 14 88
22 44 61 11 87 0 28 64
88 22 43 43 54 17 42 81
56 23 0 11 17 24 56 71
61 19 21 82 39 0 77 27

Sample Output

11
31
76
24
17
64
43
15
52
44
68
81
61
88
27
36
71
56
Found the fossil!

Problem E: Broken Messages

Team Rocket wants to send messages amongst their operatives without local authorities or
meddlesome trainers being able to read them. To communicate safely, Team Rocket uses a
simple substitution cipher for their messages. This works by mapping one letter onto another.
For example, the cipher might look like this:

Then, when Team Rocket wants to send a message, they replace each letter with the one it is
mapped to. For the example cipher above, the word “cafe” would be encoded as “pvfq”.

When an operative receives a message they use the same substitution scheme to decode the
message. (Each Team Rocket operative is issued a book with all of the different substitutions
and when to use them).

Unfortunately, many Team Rocket operatives are not very careful, and make mistakes when
doing the substitution. This can lead to all kinds of trouble.

Your goal is to read in the original message, and the encoded message, and check for potential
mistakes the operative may have made in the substitution. To do this, you will look for the
following potential errors:

1. Two identical characters in the original message being encoded differently. For example,
in “weedle” -> “fqrbxp”, the two e’s have different substitutions indicating an error.

2. Two identical characters in the encoded message corresponding to different characters
in the original message. For example, in “froakie” -> “ppciwkl”, f and r are both encoded
as p, also indicating an error.

Of course, it would be better for Team Rocket to use a computer program to do the substitution
in the first place, but Team Rocket did not get where it is today by making good decisions.

Input

Input will consist of two lines of lowercase letters, spaces, and punctuation. The first line is
the original message, while the second is the encoded message.

Spaces and punctuation are not encoded, and you can assume there are no errors in these
characters.

Output

If you detect an error, your program should output “Error detected.” Otherwise, it should
output “No error detected.”

Sample Input

we will steal pikachu at midnight!
av azoo hqvfo emufykt fq dzmszpkq!

Sample Output

Error detected.

Problem F: I Choose Who?

During a Pokemon battle, trainers try to send out Pokemon who will beat their opponent’s Poke-
mon. Which Pokemon to send against another can be a difficult decision. Trainers primarily
base this on the level and type of the Pokemon involved.

A level is a number in the range of 1 – 100 indicating how strong and experienced the Pokemon
is.

There are different types of Pokemon, and some types have advantages in battle over other
types. The following table lists seven common types of Pokemon along with estimates on how
strong they are against other types.

Normal Fire Water Grass Electric Fighting Psychic
Normal -5 -5

Fire ÷2 ×2 +10
Water ×2 ÷2 ÷2 +5
Grass ÷2 ×2

Electric -10 ×2 ÷2
Fighting +5 -5 ×2 ÷3
Psychic +5 ×3

The rows indicate the type of your Pokemon, while the columns indicate the type of your
opponent’s. The entries in the table indicate a modifier on the levels of the Pokemon involved.

For example, if you have a Water type Pokemon, while your opponent has a Fire type, you will
have a “×2” modifier. So, for example, a level 10 Water Pokemon would be equivalent to a
level 20 Fire Pokemon. Likewise, a level 35 Psychic Pokemon would be equivalent to a level
40 Normal Pokemon.

If there is no entry in the table, it means the corresponding Pokemon have no particular ad-
vantage or disadvantage against each other.

Your goal is to write a program to help trainers choose which Pokemon to send into battle
based on the level and type of the opponent, and the level and type of the Pokemon the trainer
has available to them.

The strategy your program should take is to send out a Pokemon with a type-adjusted level
that is greater than the opponent. If there are multiple such Pokemon, you should send the
one with the lowest actual level (to keep your strongest Pokemon as long as possible). If there

are no Pokemon with a type-adjusted level higher than the opponent, you should send the
Pokemon with the lowest actual level (to keep your strongest Pokemon as long as possible).

Input

Input will consist of a list of 7 Pokemon. The first Pokemon given will be the opponent. The
remaining 6 Pokemon will be the ones in the trainer’s party that you have to choose from.

Each Pokemon will have a name, level, and type.

Output

Output will consist of the phrase “<Name>, I choose you!”, where <Name> is replaced with
the name of the Pokemon being chosen.

Sample Input

Growlithe Fire 27
Meowth Normal 30
Magikarp Water 3
Pidgey Normal 14
Quilladin Grass 52
Squirtle Water 15
Electrike Electric 24

Sample Output

Squirtle, I choose you!

Problem G: Safari Zone Planning

The Safari Zone in Hoenn is a reserve for rare Pokemon. Each type of Pokemon has their own
area in the Safari Zone to live. Pokemon trainers can come to the Safari zone to see Pokemon
they would otherwise not encounter.

The Safari Zone is being renovated and the Hoenn city council is considering how to divide
the space into areas for each type of Pokemon. One thing that is essential is ensuring that the
areas allocated for each type of Pokemon do not overlap. This is especially important since
some Pokemon in the Safari Zone, such as Scyther and Electabuzz, are quite hostile to each
other.

The Hoenn city council has asked you to write a program to analyze the proposed area divisions
and ensure they do not overlap.

Each area is represented by the x and y coordinates of the lower-left, and upper-right cor-
ners. The coordinates will be integer numbers in the range of (0 - 100). The point (0, 0) is
in the lower-left hand corner of the Safari Zone. Each area will be rectangular and aligned
horizontally and vertically.

Input

The first line of input will be an integer giving the number of areas. Each subsequent line
of input corresponds to one area. Each of these lines will have four integers: x1 y1 x2 y2
where (x1, y1) are the coordinates of the lower-left corner of the area, and (x2, y2) are the
coordinates of the upper-right corner of the area.

Output

Your program should output either “Areas overlap.” or “Areas do not overlap.”

Sample Input

4
1 1 2 2
2 5 5 8
4 2 8 4
7 3 9 7

Sample Output

Areas overlap.

Visualization of Sample Input

Problem H: Porygon

Porygon is a man-made Pokemon that was created in the Pokemon Lab
in the Kanto region. It is made up entirely of computer code represent-
ing data and commands. Porygon can move freely through cyberspace.

Porygon’s data memory consists of an array of one thousand integers.
Porygon also has a memory index that indicates which memory cell is
being operated on.

Porygon is capable of the following attacks:

Number Attack

1 Tackle

2 Conversion

3 Sharpen

4 Psybeam

Rather than have the trainer choose which attacks Porygon uses, they are decided by a control
program. This program consists of the following commands:

Command Meaning

> Increment the memory index by 1.

< Decrement the memory index by 1.

+ Increment the integer stored at the memory index by one.

- Decrement the integer stored at the memory index by one.

! Use the attack corresponding to the integer stored at the memory index (1,
2, 3 or 4).

[If the integer stored at the memory index is equal to zero, then jump to the
instruction after the matching "]" command.

] Instead of executing the next sequential command, jump to the matching
"[" command.

For each command besides [and], Porygon moves on to the next command after executing
the current one. If there is no next command, the program halts (i.e. when the last command
finishes). Porygon matches brackets using the same method by which parentheses are typically
matched.

Each of Porygon’s one thousand memory cells is initialized to 0. Porygon’s memory index is
also initialized to 0. Porygon begins executing the commands starting with the first one.

Your job is to write a program to help trainers decipher Porygon control programs. You will
read in Porygon commands, simulate them as Porygon would, and output the sequence of
attacks Porygon will use.

You can assume that the control program has properly matching bracket commands, and will
terminate. You can also assume that the ! command will only be used when the integer stored
at the memory index is in the range 1-4. Lastly, you can assume that there will be fewer than
1,000 commands in the input program.

Input

Input consists of a single line consisting of a sequence of Porygon commands.

Output

Output consists of a list of the attacks the control program takes, one per line.

Sample Input

+++++>+>++>+++>++++<<<<[>!>!<<-]>>>>!

Sample Output

Tackle
Conversion
Tackle
Conversion
Tackle
Conversion
Tackle
Conversion
Tackle
Conversion
Psybeam

Problem I: Finding the Safest Path

Wally, a fellow trainer who is younger than you
has a problem. He often has all of his Poke-
mon in poor health and needs to find his way
to the Pokemon center. The Pokemon center
provides healing to Pokemon who have fainted
or are low on health. The problem is, there are
often areas with tall grass on the way to the
Pokemon center.

Wild Pokemon hide in tall grass and attack trainers as they walk through. Additionally, many
wild Pokemon like to rest near trees. While walking in tall grass near a tree, Wally is twice
as likely to be attacked by a wild Pokemon. Wally wants you to help him find a way to the
Pokemon Center minimizing his chances of being attacked by wild Pokemon.

Wally can only move in the four cardinal directions.

Input

Input consists of a 10x10 2D grid of characters representing the area Wally must travel. The
following characters are used for the following meanings:

Character Meaning

(space) A path.

^ Tall grass.

T A tree (which Wally cannot walk over).

W Wally’s starting position.

P The Pokemon center.

X An impassable space (such as water or a building).

Output

Output should be a numerical score representing Wally’s minimal chance of being attacked by
a wild Pokemon. For each space of tall grass Wally must walk through, add one to the score.

If the space of tall grass is next to a tree (in any of four cardinal directions), an additional one
is added to the score.

If the Pokemon center is completely blocked by trees or impassable spaces,print "Impossible to
get to the Pokemon Center!".

Sample Input

^^^^^^^^^^
^P ^^T^^^
^^^^^^^^^^
^^T^^^^^^^
XX^^^^ ^^^
XX^^^^ ^^^
^^^ ^^^
^^^ ^^^^^^
^^^ ^^^^^^
^W ^^^T^^
^^^^^^^^^^

Sample Output

Score is 5.

Problem J: Is Better Bigger?

Professor Rowan has a theory about Pokemon: he believes that
the experience level of Pokemon is correlated with the size of the
Pokemon. That is, for Pokemon of the same type those at higher
levels will be larger than those of lower levels.

He is testing this theory using the Pokemon Snorlax as an exam-
ple. He has found a number of Snorlax throughout the region and
recorded both their level, and their weight. He believes that they
should be correlated, but is looking for counter-examples to his
theory.

He has asked you to go over the Snorlax samples and find the largest sequence that can be
made where the levels increase, but the weights decrease. He won’t count sequences in which
either the levels or the weights are the same.

For example, let’s say the sample contains a Snorlax who is level 11 and weighs 402 kilograms.
And another is level 12 and weighs just 395 kilograms. These two form a sequence of two that
goes against Professor Rowan’s theory.

Your job is to find the largest possible subset where levels strictly increase but weights decrease.

Input

The first line of input is a number N giving the number of Snorlax in the data set.

Following that are N lines of input. Each of these lines lists the level of the Snorlax, followed
by a space, followed by the weight of the Snorlax in kilograms.

It’s possible that multiple Snorlax will have the same level, the same weight, or both.

Output

The first line of output should say “There are M Snorlax in the sequence:” where M is the
size of the largest sequence such that each successive Snorlax has a greater level and a smaller
weight.

Following that are M lines of output which indicate the Snorlax that comprise the sequence.
These lines contain a single integer between 1 and N inclusive which correspond to where that
Snorlax appeared in the input.

Sample Input

9
14 375
9 404
7 417
14 380
16 302
11 370
3 375
14 275
17 320

Sample Output

There are 4 snorlaxes in the sequence:
3
2
6
8

